Zero Carbon Power

ARPA-E Objectives and Project Examples

Mark Hartney, Program Director Karma Sawyer, Assistant Program Director

Roughly half of U.S. electricity is coal-based

Source: LLNL Energy Flow Charts (2010)

U.S. electricity generation projections

Worldwide electricity projections

World electricity generation (trillion kilowatt-hours)

Source: EIA International Energy Outlook (2011)

ARPA-E has not funded nuclear projects

Typical ARPA-E Project: \$3-4 M per project

HEATS Program

Can nuclear be used for peaking power?

First Funding Opportunity Announcement (FOA-1)

ARPA-E Programs in Zero Carbon Power

Rare Earth Alternatives in Critical Technologies

Solar Agile Delivery of Electrical Power Technology

High Energy Advanced Thermal Storage

Innovative Materials & Processes for Advanced Carbon Capture Technology

What makes an ARPA-E project?

1. Impact

- High impact on ARPA-E mission areas
- Credible path to market
- Large commercial application

2. Transform

- Challenges what is possible
- Disrupts existing learning curves
- Leaps beyond today's technologies

3. Bridge

- Between basic science and applied technology
- Not researched or funded elsewhere
- Catalyzes new interest and investment

4. igen

- Best-in-class people
- Cross-disciplinary skill sets
- Translation oriented

Supersonic duct for solid CO₂ separation

Economics of supersonic capture

CO₂ capture process that exploits waste heat

- Quality steam is diverted toward solvent regeneration.
- Much of the steam is used to heat water.

CO₂ capture process that exploits waste heat

RTI approach

- Low temperature regeneration
- Non-aqueous solvent

Potential Impact: 40 percent less energy used than conventional amine-based solvent processes

A 10,000 GPU selective membrane for CO₂

1366 Silicon Wafers: Solar at the cost of Coal

Old Process

1366 Wafers: A major supply chain disruption

Wafer-making costs

Standard costs from Photon December 2008, Centrotherm estimates.
*Assumes silicon cost of \$50/kg.

Airborne Wind Turbine

hover

Why Airborne Wind Turbines?

Performance Advantage

Capital Cost Advantage

Q&A

- ARPA-E intends to release an Open FOA on or about March 2, 2012
- We cannot discuss the following:
 - Whether ARPA-E would consider your idea "transformational"
 - Proposal strategies
 - Suggestions for specific content

